
From	Python	Scrip/ng	to	
Parallel	Spa/al	Modeling	
Jesús	Carabaño	Bravo	
jcaraban@abo.fi	
PhD	Candidate	at	ÅBO	AKADEMI	
Faculty	of	Science	and	Engineering		

Introduction

2

We are building a prototype of

a spatial framework / library / module that

uses compilers techniques to automatically

optimize sequential raster scripts in e.g. python

and executes scripts in parallel on e.g. GPUs

so that we can handle very large datasets

Looks like raster processing in ArcPy / Matlab / Numpy

Applications: land use, hydrology, air quality, land
erosion, predictive analysis, geomorphology, ecology

 1 from map import * ## "Parallel Map Algebra" package
 2
 3 a = 6.4640 # Constant coefficient
 4 b1 = 43.5404 # Elevation coefficient
 5 b2 = 1.9150 # Slope coefficient
 6 b3 = 41.3441 # Distance to city centers coefficients
 7 b4 = 12.5878 # Distance to transportations coefficient
 8 b5 = [0,0,-9.865,-8.746,-9.268,-8.032,-9.169,-8.942,-9.45]
 9 # {water,urban,barren,forest,shrub,woody,herb,crop,wetlad}
10 d = 5 # dispersion parameter
11 q = 16000 # max cells to become urban per year
12
13 x1 = read('dem') # elevation layer
14 x2 = read('slope') # slope layer
15 x3 = read('center') # distance to centers layer
16 x4 = read('transp') # distance to transportations layer
17 x5 = read('landuse') # land use layer
18 e = read('excl') # exclusion layer (e.g. water bodies)
19 s = read('urban') # initial state: urban / not-urban
20 N = 50 # years of simulation i.e. time steps
21
22 for i in range(N) :
23 z = a + b1*x1 + b2*x2 + b3*x3 + b4*x4 + pick(x5,b5)
24 pg = exp(z) / (1 + exp(z))
25 pc = pg * !e * !s * focalSum(s) / (3*3-1)
26 pd = pc * exp(-d * (1 - pc / zonalMax(pc)))
27 ps = q * pd / zonalSum(pd)
28 s = s || ps > rand()
29
30 write(s,'output')

Script 1: urban development

3
Ref: Wu 2002 “Calibration of stochastic cellular automata: the application to rural-urban land conversions”

Script 1: urban development

4

Ref 1: Guan 2016 “A hybrid parallel cellular automata model for urban growth simulation over GPU/CPU…
Ref 2: Guan 2014 “pRPL 2.0: Improving the Parallel Raster Processing Library,” Trans. GIS, vol. 18, …

Optimizations Baseline GPU GPU	+	Loc GPU	+	Loc	+	Act
Execution 20	min 10	min 3	min 1	min	10	s
Speed	Up 1x 2x 6.66x 17.14x

Monte	Carlo 1	iteration 10	iter. 100	iter. 1000	iter.
Execution 1	min	14	s 12	min 121	min 1214	min

Baseline	=	CPU	SIMD	Threaded										Loc	=	Locality	Opt.									Act	=	Only	Active	Blocks

 1 import urban # imports 'urban()' function, containing Listing 1
 2
 3 prob = zeros() # urban probability map
 4 M = 1000 # Monte Carlo iterations
 5
 6 for i in range(0,M) : # Monte Carlo method
 7 prob = prob + urban() # urban() returns the urban layer
 8 prob = prob / M # urban() ∈ {0,1} ==> prob ∈ [0,1]
 9
10 write(prob,'output')

Ref 1 = 32s with 64 GPUs, We = 70s with just 1 GPU

Script 1: urban development

5

California Marin
County

More 20 GB
including all layers!

However the machine
only has 16 GB of RAM

Script 2: flooding model

6

 1 from map import * ## "Parallel Map Algebra" package
 2

 3 h = read('dem') # digital elevation layer

 4 w = read('water') # water depth layer

 5 i = read('inflow') # inlets inflow layer

 6 o = read('outflow') # outlets outflow layer

 7 N = 1000 # number of time steps

 8

 9 def swap(x,i,j) :
10 x[i], x[j] = min(x[i],x[j]), max(x[i],x[j])

11

12 def netsort5(x) :
13 swap(x,0,1); swap(x,2,3); swap(x,0,2)

14 swap(x,3,4); swap(x,0,3); swap(x,1,3)

15 swap(x,2,4); swap(x,1,4); swap(x,1,2)

16

17 def avglevel(w,h,x) : # Minimization #
18 netsort5(x) # ascending order # of differences, #

19 s = w+x[0] # sum variable # Di Gregorio 1999 #

20 n = 1 # count variable # #

21 for i in range(1,5) : # Central cell: #
22 b = (s >= x[i]*i) # 7 h + 11 w #

23 s += b*x[i] # #

24 n += b # Von Neumann NBH: #

25 return s / n # | 30 | #
26 # | 13 | 7 | 6 | #

27 def gather(w,h) : # | 3 | #
28 x = [0]*5 # neigborhood (NBH) # #

29 x[0] = h # central cell # Sorting: #

30 x[1] = h[0,-1] + w[0,-1] # |3|6|7|13|30| #

31 x[2] = h[-1,0] + w[-1,0] # #

32 x[3] = h[+1,0] + w[+1,0] # Exclusion: #

33 x[4] = h[0,+1] + w[0,+1] # |3|6|7|*|*| #

34 return avglevel(w,h,x) # #
35 # Gathered avg. #

36 def distri(w,h,l) : # water level: 9 #
37 wh = w+h # prev water level # #

38 c = max(0, l[0,-1] − wh) # Water distrib: #

39 c += max(0, l[-1,0] − wh) # |3+6|6+3|7+2|*|* #

40 c += max(0, l[+1,0] − wh) # #

41 c += max(0, l[0,+1] - wh) # Final chw level: #

42 c += max(h, l) − wh # | 30 | #

43 cwh = max(c + wh, h) # | 13 | 9 | 9 | #

44 return cwh - h # | 9 | #
45

46 for j in range(0,N) :
47 w = w + i # fill inlets with water

48 l = gather(w,h) # gather avg. water level

49 w = distri(w,h,l) # distribute water to NBH

50 w = max(w-o,0) # drain water from outlets

51

52 write(w,'output')

Ref: S. Di Gregorio and R. Serra, “An empirical method
for modelling and simulating some complex macroscopic
phenomena by cellular automata”

Ref: P. Topa, “Cellular Automata Model Tuned for Efficient Computation on GPU with Global Memory Cache”

 1 from map import * ## "Parallel Map Algebra" package
 2

 3 h = read('dem') # digital elevation layer

 4 w = read('water') # water depth layer

 5 i = read('inflow') # inlets inflow layer

 6 o = read('outflow') # outlets outflow layer

 7 N = 1000 # number of time steps

 8

 9 def swap(x,i,j) :
10 x[i], x[j] = min(x[i],x[j]), max(x[i],x[j])

11

12 def netsort5(x) :
13 swap(x,0,1); swap(x,2,3); swap(x,0,2)

14 swap(x,3,4); swap(x,0,3); swap(x,1,3)

15 swap(x,2,4); swap(x,1,4); swap(x,1,2)

16

17 def avglevel(w,h,x) : # Minimization #
18 netsort5(x) # ascending order # of differences, #

19 s = w+x[0] # sum variable # Di Gregorio 1999 #

20 n = 1 # count variable # #

21 for i in range(1,5) : # Central cell: #
22 b = (s >= x[i]*i) # 7 h + 11 w #

23 s += b*x[i] # #

24 n += b # Von Neumann NBH: #

25 return s / n # | 30 | #
26 # | 13 | 7 | 6 | #

27 def gather(w,h) : # | 3 | #
28 x = [0]*5 # neigborhood (NBH) # #

29 x[0] = h # central cell # Sorting: #

30 x[1] = h[0,-1] + w[0,-1] # |3|6|7|13|30| #

31 x[2] = h[-1,0] + w[-1,0] # #

32 x[3] = h[+1,0] + w[+1,0] # Exclusion: #

33 x[4] = h[0,+1] + w[0,+1] # |3|6|7|*|*| #

34 return avglevel(w,h,x) # #
35 # Gathered avg. #

36 def distri(w,h,l) : # water level: 9 #
37 wh = w+h # prev water level # #

38 c = max(0, l[0,-1] − wh) # Water distrib: #

39 c += max(0, l[-1,0] − wh) # |3+6|6+3|7+2|*|* #

40 c += max(0, l[+1,0] − wh) # #

41 c += max(0, l[0,+1] - wh) # Final chw level: #

42 c += max(h, l) − wh # | 30 | #

43 cwh = max(c + wh, h) # | 13 | 9 | 9 | #

44 return cwh - h # | 9 | #
45

46 for j in range(0,N) :
47 w = w + i # fill inlets with water

48 l = gather(w,h) # gather avg. water level

49 w = distri(w,h,l) # distribute water to NBH

50 w = max(w-o,0) # drain water from outlets

51

52 write(w,'output')

Script 2: flooding model

7

Ref: Valette 2016 “SoDA project: A simulation of soil surface degradation by rainfall”
Ref: D. D’Ambrosio 2001 “A Cellular Automata model for soil erosion by water”

The objective of our project, called SoDA (Soil
Degradation Assessment), is therefore to develop and
validate a dynamic simulation of soil erosion at the meter
scale, keeping in mind a constant care for visualization.1

To ensure the correctness of our model, we have a
preoccupation with a validation by the images and
numerical data that simulation will provide. For that
purpose collaborations with experts in this field of research
are essential and we do cooperate with an INRA2

laboratory (Agronomy Unit Laon-Reims-Mons, France).

2. Description of the processes involved in soil erosion and
surface crusting

In order to simulate the soil structure evolution we need
to have a description of the different processes involved in
this phenomenon. In our literature review we have
encountered three main kinds of soil erosion: wind erosion
[20], thermal erosion [21] and hydraulic erosion [17].

Although thermal weathering, due to thermal shocks
and gravity, influences the topological aspect of the soil
and has been modeled for several visual simulations
[15,19,21,22], we will concentrate on hydraulic erosion
which is the main process responsible for the evolution of
the soil surface of agricultural soil. Hydraulic erosion can
be caused by rainfall or running water (Fig. 1). First,
raindrops cause disaggregation: continuous matter or
aggregates break down into smaller fragments [23]. Then,
these fragments can be mobilized and transported by
splash effect or by runoff [24,25].

Rainfall and runoff cause structural reorganization by
the formation of crusts. Crusts are thin soil surface layers
more compact and hard, when dry, than the material
directly beneath. Generally, two main types of crust are
distinguished by their mode of formation: structural crusts
and sedimentary crusts [26]. A structural crust develops in
situ and is the result of gradual coalescing of aggregates
caused both by particle translocation and by raindrop
compaction, whereas a sedimentary crust is formed by
deposition of the particles suspended in overland flow [27].
Crusts hamper seedling emergence, reduce infiltration and
favor runoff, puddling and thus erosion. The photographs
of Fig. 2 show the visual perception of soil evolution and
degradation with the generation of both types of crust from
the initial soil shown in the first photograph: structural
crust, in the second photograph, and sedimentary crust, in
the last one. This evolution can be characterized by four
main points:

(1) aggregates outlines become less sharp and can even
disappear,

(2) filled orifices become more and more numerous,

(3) surface roughness is decreasing,
(4) the color of the soil and its reflectance properties are

changing: the particle segregation results in either
chemical (minerals) or physical (particle size) differ-
entiation, which are both correlated with reflectance
properties of soil [28].

It is worth noticing that these criteria are purely visual. For
an agronomist the first and very important tool is direct
visual observation. That is why in our project we have a
constant care for visualization and we want to get images
as well as numerical results from our simulator, in order to
allow visual comparisons between simulation and reality.
In particular, we aim to recreate the same visual evolution.

3. Related works

We present in this section a brief review of models found
in the field of Computer Graphics and Soil Science
followed by a few comments.

3.1. Computer graphics models

Musgrave et al. [19] demonstrate a new method for
creating mountain fractal terrains with the use of height
fields. They suggest two erosion algorithms which simulate
hydraulic erosion by flowing water, ignoring evaporation
and infiltration, and thermal weathering due to the thermal
shocks which chips away steep inclines and forms talus
slopes.
Kelley et al. [13] produce images of realistic-looking

terrain with an algorithm consisting of two distinct steps.

ARTICLE IN PRESS

Fig. 1. The processes of erosion.

1Informations and multimedia material are available at www.soda-
project.com

2INRA stands for ‘‘Institut National de la Recherche Agronomique’’ (i.e.,
National Institute of Agronomic Research).

G. Valette et al. / Computers & Graphics 30 (2006) 494–506 495

1-dimensional water balance

2-dimensional neighborhood
More advanced erosion model

Script 2: flooding model

8

Finland Saimaa
Basin

More than magic

9

Python
Script

Compiler
Magic

Parallel
Speedup

Compiler Techniques

10

T B
R 0

tmp R 1
R 2
F 0

tmp Z 0
R 3

e) Compilation h) Scheduling

c) Grouped Graphb) Dependency Graph d) GPU Code

f) Tasks & Dataflow
Output

Ti
m
e	
(t
as
k)
	d
im

en
sio

n

·	·	·

g) Blocks, Jobs

Sp
ac
e	
(b
lo
ck
)	d

im
en

sio
n

Input Input

tmp			

a) Python Script

L1	 L2	

R	

L3	 Z	

F	

L1	

R	
L2	

F	

Z	L3	

IN1	=	read(input1)	
IN2	=	read(input2)	
L1	=	LocalOp(IN1) 		
L2	=	LocalOp(IN2) 		
R	=	RadialOp(L1)	
F	=	FocalOp(R,L2)	
L3	=	LocalOp(R,F)	
Z	=	ZonalOp(L3,F) 		
write(Z,output)	

OpenCL	
Compiler	

1	0	 2	 3	

1	0	 2	 3	

1	0	 2	 3	

S
ym

bo
lic

Fu
si

on

G
en

er
at

io
n

D
ec

om
po

si
tio

n

R
eo

rd
er

in
g

E
xe

cu
ta

bl
e

The #1 optimization is locality. Avoids
idle CPU cycles waiting for the data

GRASS, QGIS, ArcGIS don’t exploit locality!

Struggling for locality

11

10	GB/s

(bandwidth)

1	GB/s

100	GB/s

100	MB/s
				1x	order	of	

magnitude	difference	
in	bandwidth

4x	orders	to	GPU	raw	
processing	power

		3x	orders	to	GPU
memory	and	CPU	
processing	power

					2x	orders	of	
difference	

to	main	memory

GPU	mem:	1~10	GB	

On-chip:		10	MB	Cache	L1:	100	KB	

Cache	L2:			1	MB	

Cache	L3:			10	MB	

Main	Memory:	10	~	100	GB	

Solid	State	Drive:		0.1	~	1	TB	

Hard	Disk	Drive:			1	~	10	TB	(capacity)	

	
~100	GigaFlops	

	
~1	TeraFlops	

CPU	 GPU	

Summary

12

A framework that automatically optimizes raster
python scripts and executes them in parallel.

Looks like ArcPy / Matlab / Numpy

Applications: land use, hydrology, air quality, land
erosion, predictive analysis, geomorphology, ecology

Consequences
•  You might not need supercomputing power

•  because your machine is still underutilized

•  and workstations are easier to work with!

Thanks	for	your	/me!	
Jesús	Carabaño	Bravo	
jcaraban@abo.fi	
PhD	Candidate	at	ÅBO	AKADEMI	
Faculty	of	Science	and	Engineering		

