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Seedling stands and related RS challenges

Forest plot (10 X 10 m) with
tensors of field-located trees

Less foliaged sparse or dense

Seedling stands : :
mixed canopies

1.Seedling > 2.Young >  3.Mature -  4.Regeneration - 1.Seedling >  2.Young -

stand forest forest area stand forest

Modified from the Finnish Forest Association (URL: https://frantic.s3.amazonaws.com/smy/2015/03/The-commercial-forest-cycle.pdf)

Crown Cover Projected foliage cover

noCyy, (original) withCgp, (processed)

Red-green-blue (RGB) Canopy height model (CHM)

A solution we found

Visualizing the effect of applying the canopy threshold (C,,)-
based image pre-processing method introduced in this
research on two sample pine trees with height 1.4 m (upper
row) and 1.3 m (lower row).

The white pixels in CHM denote nullified (C,,-affected) pixels
after image pre-processing due to a height of <0.4. The +
symbol in the middle of the images shows the location of a
field-measured treetop.
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Remote sensing data:
* UAV-PPC, RGB (1.3 cm)
» MicaSense multispectral 5 cm (5 bands)

Legend
[_IBoundary of forest stands
[ Boundary of forest plots
[ Boundary of flight zone

Field data:
* 5417 trees mapped with RTK

75 plots (10 x 10 m), 5 flight zones.

14 seedling stands

Tree density (3 000 — 15 000 TPH)

— Considering underlying trees 3 500 — 54 000 TPH)
Height (1—12 m)

Species (pine 13.6%, spruce 28.7%, birch 48.4%, other 9.3%)
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Method

We created different dataset by applying the Cth idea (noCth and withCth)
and adding 8 vegetation indexes (withVI and noVIs).

A schematic graph of the methodological principles behind introducing canopy threshold (C,,)-based image pre-
processing and combining two subsets of the test dataset based on whether or not it was affected by C,,

processing.
Cth-based image processing (objective ) Combining subsets of test dataset (objective 2)
n0Cu (original) Train Vlﬁd'\ BEELL A new test dataset was
S S : created by merging
A o - the Cy-affected and
withCq (processed Train Valid| | Test - niCsaffected
t (P ) Vﬂid > ?ﬁ tensors together.
Legend
F | not-Cy-affected subset of test dataset (n = 361; 66.6%)
. Cu-affected subset of test dataset (n = 181;33.4%)
Input
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Method

o Hypertuning CNN and RF

CNN hypertune

Dropout rate 1 = [0.0, 0.2, 0.4, 0.6, 0.8];
Dropout rate 2 = [0.0, 0.2, 0.4, 0.6, 0.8];

Dense unit 1 = [10, 50, 100, 150, 200, 250, 300];
Dense unit 2 = [10, 50, 100, 150, 200, 250, 300];
Batch_size = [32, 64, 128, 256, 1024, 1500].

RF hypertune
e . _ Default
Parameter Name  Description (Pedregosa et al. [24]) Given Values for Grid Value
max_depth The maximum depth of the tree. [None, 2, 10, 50, 80, 100] None
min_samples_split The minimum number of samples required to split an internal node. [2,3,5,8,10,12] 2*
min_samples_leaf The minimum number of samples required to be at a leaf node. [1,2,3,5,20,100] 1
. . . [0, 2, ‘auto’, ‘log2’, ‘sqrt’,
max_features The number of features to consider when looking for the best split ** None] sqrt
one

) The number of trees in the forest. Usually, the bigger the better, but a larger number slows down the [75, 100, 125, 200, 500,

n_estimators 100

computation.

1000]
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Results

Overall accuracy within the canopy threshold (C,,)-affected (n = 161, 33.4%) and not-affected (n = 361, 66.6%)
subsets of the test set (n = 542) in RF, CNN noVIs (without vegetation indices, five bands), and CNN withVIs
(after fusing 8 VIs to tensors pixels, 13 bands) in the original (noC,,) and C-applied (withC,,) datasets.

RF CNN noVIs CNN withVlIs
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Results

_
Overall accuracy of species classification within different C,,-affection rates (%)

noCin withCi Combined
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Overall Accuracy (%)

Results

Overall accuracy of species

noC, withC
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Seedling height bins (m)
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Overall accuracy

The summary of species

classification accuracies in the
normalized confusion matrix
together with overall accuracy

and kappa values
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Evaluation of classification accuracy for each dataset and classifier

Results

Dataset Classifier OA Kappa Overall Precision Overall Recall Overall F1 Macro Overall F1
(%) PP (Per Species) * (Per Species) * (Per Species) * Micro
07 0.6 0.6
RF 67.9 0.5 (0.5,0.7,0.7, 1.0) (0.3,0.7, 0.8, 0.4) (0.3,0.7,0.8, 0.6) 0.7
0.8 0.7 07
NoCyp, CNN noVls 76.9 0.6 (0.7,0.8, 0.8, 0.8) (0.6, 0.8, 0.9, 0.4) (0.6, 0.8, 0.8, 0.5) 0.8
. 0.8 0.7 07
CNN withVls 79.0 0.7 (0.7,0.9,0. 8,0.7) (0.6, 0.8, 0.9, 0.5) (0.7,0.9, 0.8, 0.6) 0.8
07 0.7 0.6
RF 68.3 0.5 (0.6,0.7,0.7, 0.8) (0.3,0.8, 0.8, 0.4) (0.4,0.7, 0.8, 0.5) 0.7
07 0.7 07
WithCy, CNN noVls 751 06 (0.7,058,0.7,0.7) (0.6, 0.8, 0.8, 0.4) (0.6,0.8,0.8,0.5) 0.8
. 0.8 0.7 07
CNN withVls 79.3 0.7 (0.8, 0.8,0.8, 0.8) (0.6, 0.8, 0.9, 0.5) (0.7,0.8,0.8, 0.6) 0.8
07 0.5 0.6
RF 66.6 05 (0.6, 0.6, 0.7, 0.9) (0.2,0.7,0.9,0.4) (0.3,07, 0.8, 0.6) 0.7
. 0.8 0.7 07
Combined
dataset CNNnoVls 773 06 (07,08,0.8,08)  (0.5,0.,09,0.4) (0.6,0.8,0.8, 0.5) 08
. 0.8 0.7 07
CNN withVls 79.9 0.7 (0.8, 0.9, 0. 8,0.7) (0.6, 0.8, 0.9, 0.5) (0.7,0.9, 0.8, 0.6) 0.8

* The four numbers inside the parentheses show the accuracy metrics for each species of pine, spruce, birch, and
other-species classes, respectively.



Results

Visualization of the training and validation accuracy in every epoch for
the CNN models on the noCwand withCwdatasets.
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Results

Model configurations selected for each classifier, together with other information regarding training and validation accuracies,
as well as run time measurements. The model configuration and other information for the combined two methods were the
combination of the configuration and other information of the two other methods.

Max Number of Mean St.dev of
Max Train L Train Train Total Training
Model Best Tunable Total Accuracy in Validation Epochs Ran Time per Time per Time Prediction
Dataset Classifier Param (Out of Param Param the Be:t Accuracy in before Early E oc:in E ocl:)in GridSearch Time
GridSearch) a the Best  Stopinthe P (Grid
Model Model Best Model Best Best Time)
Model Model
None, 0, 2, 2,
RF On?bob ' 77760 NA 0.99 0.7754 NA 36.03 ¢ 194 3h 32 min 9 ms
noC CNN 32,08,04, 165,762 166,742 0.86 0.80627 300 0.63 0.07 106.8 h (1525 03
th noVls 150, 100 " ’ ' ' ' ' h f ms/step
CNN 32,0.6, 0,100 0.3
. o ' 130,814 131,594 0.99 0.80812 133 0.75 0.19
withVls 60 ¢ ms/step
None, 0, 1, 2,
RF 77760 NA 1.00 0.7641 NA 8.25¢ 0.38 € 9 ms
1000
withC CNN 82,0602, 206,862 208,042 0.99 0. 80812 119 0.64 0.11 102.8 h (14.68 03
th hovis 200, 150 d " ’ ' ' ' ' h) f ms/step
CNN 32,08,0.2, 0.3
. oo 266,664 267,944 0.92 0.81550 140 0.68 0.18
withVlIs 150, 250 ms/step
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Abstract

Tree species information is important for forest management, especially in seedling stands. To mitigate the spectral
admixture of understory reflectance with small and lesser foliaged seedling canopies, we proposed an image pre-
processing step based on the canopy threshold (Cy,) applied on drone-based multispectral images prior to feeding
classifiers. This study focused on (1) improving the classification of seedlings by applying the introduced technique; (2)
comparing the classification accuracies of the convolutional neural network (CNMN) and random forest (RF) methods;
and (3) improving classification accuracy by fusing vegetation indices to multispectral data. A classification of 5417
field-located seedlings from 75 sample plots showed that applying the Cy, technigue improved the overall accuracy
(OA) of species classification from 75.7% to 78.5% on the Cyy-affected subset of the test dataset in CNMN method (1).
The OA was more accurate in CMNM (79.9%) compared to RF (68.3%) (2). Moreaver, fusing vegetation indices with
multispectral data improved the OA from 75.1% to 79.3% in CNN (3). Further analysis revealed that shorter seedlings
and tensors with a higher proportion of Cin-affected pixels have negative impacts on the OA in seedling forests. Based
on the obtained results, the proposed method could be used to improve species classification of single-tree detected
seedlings in operational forest inventary.

Keywords: seedling forest; species classification; canopy height threshold (Cy); image pre-processing; UAV;
random forest; artificial intelligence
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Thanks for your attention.

| welcome your question and comments
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