3-D modeling of biodiversity and Ecosystem Services (BES)

Variable of interest:

1. Above-ground:

- Aboveground vegetation (Tree height, diameter, BA, volume, aboveground biomass, species composition, site type)
- Understory vegetation (species, functional group)
- Biodiversity indices (deadwood, richness, habitat suitability)
- Ecosystem services (recreation potential, bilberry, cowberry, carbon)

2. Below-ground:

- Topsoils (surface temperature, soil organic matter, nitrogen, pH, litter-organic and phosphorous, soil texture)
- Hydrological (water table depth, soil moisture)
- Soil GHG flux

Remotely sensed data

A workflow of above-ground variables mapping

Feature extraction

Map BES

Priority mapping of biodiversity and ecosystem services (BES)

- 3D point clouds data
- BES data
- *k*-nearest-neighbor imputation method
- Stochastic multicriteria acceptability analyses (SMAA) for priority mapping

Fig. A schematic overview

Fig. Priority mapping BES

References

- Donager, J.J., Sánchez Meador, A.J. and Blackburn, R.C., 2021. Adjudicating perspectives on forest structure: how do airborne, terrestrial, and mobile lidar-derived estimates compare?. Remote Sensing, 13(12), p.2297.
- Lechner, A.M., Foody, G.M. and Boyd, D.S., 2020. Applications in remote sensing to forest ecology and management. One Earth, 2(5), pp.405-412.
- Rana, P. and Vauhkonen, J., 2023. Stochastic multicriteria acceptability analysis as a forest management priority mapping approach based on airborne laser scanning and field inventory data. Landscape and Urban Planning, 230, p.104637.